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Group analysis for unsteady axisymmetric incompressible 
viscous flow (kinematic approach) 
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Dipartimento di Mathematica, Universita di Perugia, Italy and School of Mathematics, 
Georgia Institute of Technology, Atlanta, GA, USA 

Received 29 July 1986, in final form 5 May 1987 

Abstract. Group properties are investigated for unsteady axisymmetric incompressible 
viscous flow by means of the kinematic approach of Pillow and Paull. The full symmetry 
group and Lie algebra for the original system of three partial differential equations is 
derived and is shown to be infinite dimensional. Further group reductions are possible 
and some solutions are constructed. 

1. Introduction 

Three basic kinematic conservation principles suffice to describe unsteady axisymmetric 
incompressible viscous flow (Pillow 1970). They concern the conservation of volume, 
ring (axial half-plane) circulation (with volume density 1) and kinematic swirl angular 
momentum (with volume density T). The dynamic role of the pressure field is relegated 
to the equations of motion. Following Pillow and Paul1 (1989, the system of governing 
equations is cast in spherical polar coordinates (r, 8, 4). Thus, away from the axis of 
symmetry, we have 

(1.1) 

(1.2) 

r4( 1 - 

- 2(  1 - p ’) mp - 2 r p 7 ~ ,  = o 
r2T,+$,Tw-+,T,- v[(i - p 2 ) ~ 1 1 p + r ’ ~ r , ] = ~ .  (1.3) 

+ (1 - p2)$11,, + r2$,, = 0 
r5(1 -p2)2i ,+r3(1 - -p2)2(+r iF vr3(1 - p 2 ) 2 [ ( 1  - p 2 ) ~ p 1 1  - 4 , 4  + r 2 ~ r , + 4 r i , l  

Here 4 and Y are the stream function and the (constant) kinematic viscosity, respec- 
tively, and p =cos 8. To simplify the notation, we make the following substitutions 
in (1.1)-(1.3): x instead of r, y instead of p, U instead of 1, U instead of $ and w 
instead of T. 

Then we have 

x4(1 - y 2 ) u  + (1 - y 2 ) u y y  + xzuXx  = o 

- 2 (  1 - y’) ww,, - 2xyww, = 0 

X 2 W l  + u,wy - uywx - v[( 1 - y’)  wyy + X’W,, J = 0. 

( 1 . 4 )  

(1.5) 

(1.6) 
In this paper, the group properties for the system (1.4)-(1.6) are developed. Two 
subgroups of the full group are used to generate exact solutions, further group reduction 
being possible. 

x4(  1 - y 2 )  + x’(  I - y 2  )2(  U , U ~  - uyux ) - v ~ 3 (  1 - y 2  )’[ ( 1 - y 2 )  uy), - 4yu, + x 2  U,, + ~ x u , ]  
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2. Full Lie group and algebra 

The mathematical foundations for the determination of the full group for a system of 
differential equations can be found in Ames (1972) and Bluman and Cole (1974) and 
the general theory is found in Ovsiannikov (1982). In the spirit of Lie we desire to 
find infinitesimal transformations of the form: 

t ’ = t + ~ T ( t , x , y , u , u ,  w ) + 0 ( e 2 )  

x ’ = x + & X ( t , X , y , u , u ,  W ) + O ( E 2 )  

y ’ = y + E Y ( t , x , y ,  U, U, W ) + O ( E 2 )  

U ’  = U + & U (  t ,  x ,  y ,  U, U, w )  + O(E2)  

u ’ = u + & V ( t , X , y , u , u ,  W ) + 0 ( F 2 )  

w ‘  = w + E W (  t, x ,  y ,  U, U, w )  + O( E 2, 

which leave (1.4)-( 1.6) invariant. System (2.1) leaves (1.4)-( 1.6) invariant if and only 
if (U‘, U’, w ‘ )  is a solution of (1.4‘)-(1.6’) whenever (U, U, w )  is a solution to (1.4)-(1.6). 
By (1.4‘)-(1.6’) we mean the same equations in the primed variables. By extensive 
analysis it is found that the full Lie group leaving (1.4)-(1.6) invariant is given by (2.1) 
with 

T = 2 a t + p  (2.2) 

x = a x +  h ( t ) y  (2.3) 

v =  f f U + $ X 2 (  1 - y 2 ) h ’ ( t ) + f (  t )  

w=o 
where a and p are two arbitrary parameters and  h(  t )  andf (  t )  are arbitrary, sufficiently 
smooth functions of t. With X i  ( i  = 1,2)  representing the generators associated with 
the parameters a and p, respectively, it follows that 

x, = 2 t a ,  + x a ,  - 3 u a ,  + va, (2.8) 

xz = a , .  (2.9) 

Also, from the arbitrary functions in (2.3)-(2.6) infinitely many operators of the 
following forms are obtained: 

1 - y 2  X 2  
h( t ) a ,+ - ( i  - y 2 ) h ’ ( t ) a v  (2.10) 2 

X , ( h ) =  h ( t ) y a , + -  
X 
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Table 1. 

The commutator table of the Lie algebra for the system (1.4)-( 1.6) is given in table 
1, where the entry in the ith row and j t h  column is the commutator of X,, X,, i.e. 

IN,, x,l= x,x, -x,x,. (2.12) 

3. The subgroup generated by the parameter (Y 

We consider the subgroup of the full Lie group (2.2)-(2.7) with a = 1 and p = h ( t )  = 
f (  r )  = 0. This subgroup has the associated operator 

X, = 2ta, + xa, - 3ua, + va,. (3.1) 

The first-order equation for the invariants XI I = 0 has the characteristics 

5 = t/x2 V’Y (3.2) 

(3.3) 

(3.4) 

Further group reduction is possible. By lengthy calculations it is found that the full 
Lie group leaving (3.4)-(3.6) invariant is given by 

= 5+ E(2C157J5) + O( E ’ )  

7)’= ~ + “ [ - c l ( l  - 7 ’ ) J 5 ] + 0 ( e ’ )  

U’’= U’+ E (  - 3 c , C ~ J 5 )  + O( E ’ )  (3.7) 

v ” = C + E  c l?p -c , -  +c2  Jg + O ( E 2 )  [( 1 - - 7 7 2  45 1 1 
i‘= $-to(&>) 
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where c1 and c2 are two parameters. It corresponds to a finite-dimensional Lie algebra 
L2. The equations for the invariant surface are obtained from (for cI # 0) 

5 = ( 1  - T 2 ) / 5  (3.8) 

(3.9) 

where F ( c ) ,  G ( [ ) ,  H ( 5 )  satisfy the ordinary differential equations 

F + 4G" = 0 (3.10) 

8 ~ 5 F " +  (35+ 1 6 ~  -4c2/c1)F'+ 3 F  = 0 (3.11) 

8v5Hf'+ (35 -4c2/cl)H'= 0. (3.12) 

If we assume c2 = 2vcl,  the general solution of (3.12) is given by 

H ( 5 )  = - ivA, (S+ iv )  exp(-3[/8v)+A2 (3.13) 

with A , ,  A2 arbitrary constants. We also obtain the general solution of (3.11): 

with A,, A6 arbitrary constants. Then from (3.10) we have 

G(5) = -- 16 9 v2A3 e x p ( - $ ) + A d + &  

(3.15) 

with A4, A5 arbitrary constants. Assuming A, = 0, the solution of the system (1.4)-( 1.6) 
resulting from (3.13)-(3.15) is 

(3.16) 

( 1  -yZ)xZ 
Jt + A,J t  (3.17) 

w (  t ,  x, y )  = - ivAI  ((' - f2)"  +:U) exp( - 3(1 i:t2)x2) + A2. (3.18) 

4. The subgroup with /3 = 1 and a = O  

Here we consider the subgroup of the full Lie group (2.2)-(2.7) with the associated 
operator 

1-y2 0 = a ,  + h(t)ya, +- h(t)a, +[1XZ(1 - y 2 ) h ' ( t )  +f(t)]a,. (4.1 ) 
X 
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It gives rise to the characteristic variables 

& = x ( l - y 2 ) ” 2  t2 = xy - K( t )  (4.2) 

U = a ( t - 1 1 5 2 )  U = 4x2( 1 - y 2 ) h (  t )  + f (  t )  + G(&, &) 
(4.3) 

w = @ ( ( I ,  5 2 )  

where P ( t )  = h (  t )  andf‘( t )  =f(t). Under (4.2) and (4.3) the system (1.4)-( 1.6) becomes 

&;a - 65, + 51 = 0 (4.4) 

5:(uszfi,, - GE,fi,,) -3&5, - &CC,(, + C 6 > t 2 )  -2*as>= 0 

WE2fi<, - W&6C2 - U&( We,(, + W5&) + uW5, = 0. 

5; =51+E(a151)+O(E2) 

5; = 5’ + E ( a I 5’ + a 2 )  + O( E ’ )  

(4.5) 

(4.6) 

It is possible to calculate the full Lie group leaving (4.4)-(4.6) invariant. It is given by 

U’= C + ~ ( - 3 a , u )  +0( E ’ )  (4.7) 

6’ = B + E (  a ,  fi + a 3 )  + o(E’)  
W’= W + 0 ( & 2 )  

where a , ,  a , ,  a3 are three parameters. Then the corresponding Lie algebra is a 
finite-dimensional Lie algebra L3. The equations for the invariant surface are found 
from (for a ,  # 0) 

T = ( a , 5 * + a , ) / a , 5 1  (4.8) 

~ = r ( ~ ) / ( :  fi = - - ( d a , ) +  5 , A ( 7 )  @=n(T) (4.9) 

where T ( r ) ,  A ( T )  and n ( ~ )  satisfy the ordinary differential equations 

r - A +  T A ’ +  A ” =  0 (4.10) 

r f A + 3 r , i ‘ - 3 v r - 5 v 7 r i -  u ( i + . r 2 ) r ” - 2 a a ’ = ~  (4.11) 

R‘A - 3 U T n ’  - V( 1 T 2 ) n ” =  0. (4.12) 

A solution of system (4.10)-(4.12) is 

r(r) = B,  A(.) = V T + B ,  a( r )  = B,  (4.13) 

where B ,  and B2 are arbitrary constants. The solution of system (1.4)-(1.6) resulting 
from (4.13) is 

= ~ , ~ - 3 ( 1  - y 2 ) - 3 / 2  (4.14) 

vc2 - c3 

Cl 
U=- + V X ~  - vK( t )  + f( t ) + :x2( 1 - y 2 ) h  ( t )  + B,x( 1 - y2)’ ’*  (4.15) 

w = B 2 .  (4.16) 
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5. The swirl-free problem 

In swirl-free viscous flows (Pillow 1970, Pillow and Paul1 1985) the governing equations 
(1.4)-( 1.6) reduce to 

x4( 1 - y ’) U + ( 1 - y 2 )  U,, + x 2  U,, = 0 

X Z U ,  + &U, - UYU,  - v[ (1 - y 2 )  U,,, - 4yu, + x2u,,  + 4xu,] = 0 
(5.1) 

(5.2) 
since the swirl circulation w is everywhere zero. The full Lie group for the system 
(5.1) and ( 5 . 2 )  is given by ( 2 . 2 ) - ( 2 . 6 ) .  Solutions for the system (5.1) and ( 5 . 2 )  are 
(3.16) and (3.17), and (4.14) and (4.15). 

6. Comment 

In the following, we return to the original notation of 9 1. Using cylindrical polar 
coordinates ( x ,  a, 4 )  with x measured along the axis of symmetry, a perpendicular to 
it and q5 the azimuthal angle (so the that the tangent vectors to the coordinate lines 
(x, U, 4) form a right-handed orthonormal triad with natural basis vectors ( x ,  U, a+)), 
the velocity q and the vorticity w can be written in the form 

T u  Tx o = - x - - u + + l +  
( T u  

where $, T and 1 satisfy (1.1)-(1.3). 
In § 3, by applying the first group reduction, we obtained 

I =  ~ ( 5 ,  .r l) ir3 I// - 4 5 ,  .rl) T =  G ( 5 ,  .rl) (6.3) 

5 =  t l r ’  v = P  (6.4) 

with 

where r‘ = x 2 +  a2 and p = x / r .  

a further group reduction, we found 
Solutions can be generated by solving the system (3.4)-(3.6) for 6, v^ and d. With 

1 = F ( ( ) / t J t  (L=X((T2/4t-221/)+d/r?G({)  T =  H ( L )  (6.5) 

with 

5 = uZ/ t  (6.6) 
where F, G and H are given by (3.14), (3.15) and (3.13), respectively. 

I t  is a remarkable fact that (3.13)-(3.15) represent the general solution of the ‘group 
reduced’ system. Assuming A6 = 0, the velocity q and the vorticity w, away from the 
axis of symmetry, result in 
q = [ :+$ A, exp( - E) +%]x + (; 2v -G) (T cr 
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with A, ( i  = 1,2 ,3 ,4)  arbitrary constants. If we confine the fluid within an  impenetrable 
cone given by 

U== (6.9) 

both the cr component and  the swirling component of (6.7) satisfy the no-slip condition 
if 

(6.10) 

Such a cone generalises, with the introduction of time, the conical boundary for the 
steady state discussed in Yih et a1 (1982). 

A 2 -  -256 v 2 e-3A1. 

In  § 4, we obtained 

1 = U(&, 5 2 )  c L = ~ r Z ( 1 - t L 2 ) h ( t ) + f ( t ) + ~ ( 5 1 ,  5 2 )  T=W(5i952)  (6.11) 

with 

= r ( 1 -  p2)1 ’2  = cr l2 = rp  - F( t )  = x - F( t ) .  (6.12) 

Here p( t )  = h ( t ) ,  and h ( t ) ,  f(t) are arbitrary functions of time. Again, solutions can 
be generated solving the system (4.4)-(4.6) in U, B and W. Applying a group reduction, 
it turned out that 

~ = r ( ~ ) / ( + ~  I C I = f a ’ h ( t ) + f ( t ) - a , / a , + ( ~ A ( 7 )  T=fl(.r)  (6.13) 

with 

al[x - F( t ) ]  + a, 
7 =  

a la  
(6.14) 

where r, A and R satisfy the system (4.10)-(4.12). Numerical results can be easily 
obtained. The particular exact solution found generates the following velocity and 
vorticity: 

q = [ h ’ ( t ) +  B , / ( T ] x  - ( V / U ) U +  ( B 2 / ~ ) 4  (6.15) 

w = ( B l / f f 2 ) 4  (6.16) 

This solution generalises, with the introduction of p( t ) ,  one discussed in Pillow (1970) 
for the steady state. 
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